# 사업계획서의 이해와 작성방법

발표자



주식회사 코다 서경원 대표

# 발표자 소개

# ◆ 발표자 정보

■ **이름** 서경원

■ **주요이력** 특허법인(유) 화우 총괄팀장

두호특허법인 기술사업화 본부장

■ **주요활동** 산업정책연구원 자문위원

항우연 해외출원 전략 심의위원

DNA+드론 표준화 국방분과 운영위원

기상청 기상기술 민간이전 심의회 위원

아주대/서울과기대 기술사업화 전문위원

생기원 기술료 심의위원

탄소중립 순환경제 정책포럼위원

해양수산과학기술진흥원 시민혁신단

■ 수상 2023.09 제6회 지식재산의 날 산업통상자원부장관 표창

# ◆ 주식회사 코다

■ 주 소 **서울본사** 서울시 강남구 강남대로 78길 30, 등빌딩 3층 **대전센터** 대전광역시 유성구 용산동 534 사무동 208호

■ **사업분야** IP경영 및 IP R&D (지식재산 전략자문, 시장조사분석 등) 기술거래 및 사업화 컨설팅 (기술이전, 성과분석, 정책연구)

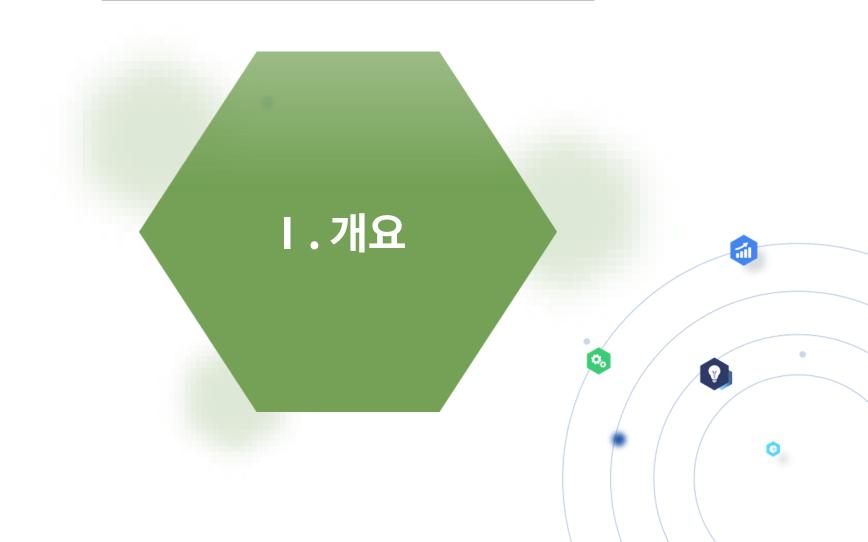
■ 등록사항 기술거래기관, 전문연구사업자, 기업부설연구소










# **CONTENTS**

# 1. 개요

# 11. 사업계획서 작성 방법

- 1. 개발 대상 기술
- 2. 개발 기술의 필요성 및 차별성(독창성)
- 3. 개발 기술 내용 및 계획
- 4. 사업화 계획
- 5. 연구개발팀 및 컨소시엄 구성
- 6. R&D 및 사업 추진 계획
- 7. 기타

# 사업계획서의 이해와 작성방법



# 작성 개요

| 1. 대/                                                            | 상기술·시장현황 및 지원 필요성                                                                                                           | · 1                                                             |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1-1.                                                             | 대상기술 현황 및 향후 전망                                                                                                             | · 1                                                             |
| (1)                                                              | 개발대상기술                                                                                                                      | · 1                                                             |
| (2)                                                              | 헌제 개발된 기술 대비 혁신성                                                                                                            | 15                                                              |
| (3)                                                              | 선행특허 분석                                                                                                                     | 22                                                              |
| (4)                                                              | 관련기술전망                                                                                                                      | 30                                                              |
| 1-2                                                              | 대상시장 현황 및 향후 전망                                                                                                             | 35                                                              |
| (1)                                                              | 목표 제품                                                                                                                       | 35                                                              |
| (2)                                                              | 목표 제품의 차별성 <mark>독창성</mark>                                                                                                 | 36                                                              |
| (3)                                                              | 대상시장 현황                                                                                                                     | 42                                                              |
| (4)                                                              | 대상시장에서 현 컨소시엄의 위치                                                                                                           | 47                                                              |
| (5)                                                              | 향후 전망                                                                                                                       | 47                                                              |
| 1-3                                                              | 지원 필요성                                                                                                                      | 39                                                              |
| (1)                                                              | 국제공동기술개발 필요성                                                                                                                | 39                                                              |
| (2)                                                              | 인력교류 계획 [                                                                                                                   | 54                                                              |
|                                                                  |                                                                                                                             |                                                                 |
| -                                                                |                                                                                                                             |                                                                 |
| 2. 7]1                                                           | 술개발 계획                                                                                                                      | 55                                                              |
|                                                                  | <b>술개발 계획</b><br>기술개발 계획                                                                                                    |                                                                 |
| 2-1                                                              | _ , _ , ,                                                                                                                   | 55                                                              |
| 2-1.                                                             | 기술개발 계획                                                                                                                     | 55<br>55                                                        |
| 2-1.<br>(1)<br>(2)                                               | 기술개발 계획                                                                                                                     | 55<br>55<br>56                                                  |
| 2-1.<br>(1)<br>(2)<br>(3)                                        | 기술개발 계획                                                                                                                     | 55<br>55<br>56<br>64                                            |
| 2-1.<br>(1)<br>(2)<br>(3)<br>(4)                                 | 기술개발 계획                                                                                                                     | 55<br>55<br>56<br>64<br>93                                      |
| 2-1<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                           | 기술개발 계획                                                                                                                     | 55<br>55<br>56<br>64<br>93                                      |
| 2-1<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                           | 기술개발 계획                                                                                                                     | 55<br>55<br>56<br>64<br>93                                      |
| 2-1. (1) (2) (3) (4) (5)                                         | 기술개발 계획                                                                                                                     | 55<br>55<br>56<br>64<br>93<br>96<br>97                          |
| 2-1. (1) (2) (3) (4) (5) 2-2.                                    | 기술개발 계획                                                                                                                     | 55<br>55<br>56<br>64<br>93<br>96<br>97                          |
| 2-1.<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>2-2.<br>3. 补分<br>3-1. | 기술개발 계획                                                                                                                     | 55<br>55<br>56<br>64<br>93<br>96<br>97<br><b>99</b>             |
| 2-1. (1) (2) (3) (4) (5) 2-2.  3. A <sup>4</sup> 3-1. (1)        | 기술개발 계획                                                                                                                     | 55<br>55<br>56<br>64<br>93<br>96<br>97<br><b>99</b><br>99       |
| 2-1. (1) (2) (3) (4) (5) 2-2.  3. A4 3-1. (1) (2)                | 기술개발 계획 기술개발 목표 개발기술의 평가방법 및 평가항목 기술개발 내용 및 추진방법 기술개발 추진체계 및 일정 예상되는 위험·장애 및 해소 방안 기술적 파급효과  삼화 계획 사업화 대상 목표 제품 개요          | 55<br>55<br>56<br>64<br>93<br>96<br>97<br><b>99</b><br>99       |
| 2-1. (1) (2) (3) (4) (5) 2-2.  3. A+3 3-1. (1) (2) 3-2.          | 기술개발 계획 기술개발 목표 개발기술의 평가방법 및 평가항목 기술개발 내용 및 추진방법 기술개발 추진체계 및 일정 예상되는 위험·장애 및 해소 방안 기술적 파급효과  남화 계획 사업화 대상 목표 제품 개요 목표 제품 상세 | 55<br>55<br>56<br>64<br>93<br>96<br>97<br><b>99</b><br>99<br>99 |

| 4. 컨소시엄 운영계획                                                 |
|--------------------------------------------------------------|
| 4-1. 컨소시엄 구성 및 기관별 역할분담115                                   |
| 4-2. 컨소시엄 역량 및 참여 효과                                         |
| (1) 주관기관 역량 및 과제 운영계획                                        |
| (2) 해외 공동기관들과의 협력을 통해 얻는 이점117                               |
|                                                              |
| (3) 프로젝트 결과물(지식재산권, 사업화 성과 등) 배분 방안                          |
| (4) 컨소시엄 공동기관 이탈 시 문제점 및 해소방안 118                            |
| 5. 연구개발기관 현황                                                 |
| 5-1. 수행팀 구성 및 역할 분담                                          |
| 5-2. 연구책임자 121                                               |
| (1) 주관기관 책임자                                                 |
| (2) 공동기관 책임자 123                                             |
| 5-3. 참여연구원 현황 138                                            |
| 5-4. 과제 관련 연구시설/연구장비 보유 현황 143                               |
| 5-5. 연구실 안전조치 이행계획                                           |
| 5-6. 연구개발기관 일반 현황 146                                        |
| 5-7. 기관(기업) 기술이전 및 사업화 실적149                                 |
| 6. 총사업비                                                      |
| 6-1. 연차별 총괄 153                                              |
| 6-2. 정부지원연구개발비 배분 및 기관부담연구개발비(현금, 현물) 배분 내역 154              |
| 6-3. 사업비 비목별 세부 내역 155                                       |
|                                                              |
| 7. 국내외 총사업비                                                  |
| 7-1. 기관별 총괄 185                                              |
| 7-2. Work Package별 총괄186                                     |
| □ 별첨                                                         |
| 별첨 1. 과제 보안등급 분류 및 심사기준 ···································· |
| 별첨 2. 기술준비도(TRL, Technology Readiness Level) 목표 ······ 188   |
| 별첨 3. 외주용역 활용 계획서 ······ 191                                 |



# 논리적, 두괄식 작성

기본전제 : RFP(과업지시서)의 명확한 해석

# 사업계획서의 이해와 작성방법



# 01

# 개발 대상 기술

# Ⅱ. 작성 방법

## 개발기술 개요 및 필요성 작성 예시

- 1. 개발기술 개요 및 필요성
- ㅇ 공유 및 개인 물품의 위생적인 사용을 위한 세균 및 바이러스 살균장치



<그림 1> 개발 목표 및 개발 필요성

| 구 분  | 내 용                                                                                                                                                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 필요성  | 불특정 다수가 이용하는 공용 시설 및 공유 물품의 즉각적인 살균에 의한 공유경제 산업의 활성화 필요      개인 이용 물품의 세균 증식 및 바이러스 노출 부위의 살균과, 개인 이동 동선의 바이러스 접촉 인자들을 살균할 수 있는 휴대성 보완 필요      기존 UV LED들 이용한 휴대용 살균기의 낮은 살균력과, 1분 내지 3분의 광조사에 의한 살균 효과를 2-3초 이내의 광조사에 의한 살균력으로 대체 필요      현재 의료기기의 멸균 기술로 이용되는 저온 플라즈마 방전 기술을 응용, 실생활의 살균 대상에 대한 바이러스 살균 필요 |
| 기대효과 | <ul> <li>독감, 사스, 메르스, 코로나 19 등 전세계적인 변종 바이러스의 확산 저지로 공유경제<br/>산업 발전에 기여 효과</li> <li>대중 이용 시설 및 개인 물품과 식기 등의 인체 접촉 대상의 즉각적인 살균에 의해 감<br/>염증 예방에 탁월</li> <li>유아, 노인 및 건강취약계층이 주로 사용하는 제품과 접촉 물품의 표면에 대한 실시간<br/>적인 살균이 가능</li> </ul>                                                                           |

## 최종 목표 작성 예시

- 노인 및 장애인의 일상생활 보조를 위한 보행/탑승용 이동보조기기 개발○ 이동 보조기기 개발 및 상용화를 위한 인증 및 임상적 효과성 분석
- 이동 모조기기 개발 및 상용화를 위한 인승 및 임상석 효교 ○ 특허조사/확보전략도출, 사업화 로드맵 도출 및 비즈니스 모델 제시

1) 연구개발과제의 최종 목표

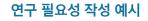




# 주안점

- ☑ 명확한 목표 제시
- ☑ 목표 달성 기술군 카테고리화
- ☑ WORK FLOW를 함께 제시

# 효과


- ☑ 평가위원에 개발기술의 명확한 이해
- ☑ 발표자료 구성 시 장점

# Ⅱ. 작성 방법

# 개발 기술의 필요성 및 차별성(독창성)

| 분야    | 정보유형                                                                 |
|-------|----------------------------------------------------------------------|
| 트렌드   | 뉴스, 트렌드, 트렌드분석, 산업분석, 주요국/기관별 신사업분석, 해외산업분석,<br>산업세미나, 산업전망, 소비지행태 등 |
| 기술    | 기술,특허문헌, 기술동향, 산업지식재산권 동향, 기술예측, 기술가치평가, 문제해결분석,<br>기술세미나, 신기술 등     |
| 시장/제품 | 시장동향, 시장예측, 가격, 신상품 등                                                |
| 인프라   | 규제, 인력(연구자), 기자재, 표준화, 산업정책/제도/법률,<br>수출입(무역), 산업통계, 원자재가격 등         |

\*출처: 박현우 외, 산업기술정보 유통체제 혁신방안 연구, 정보통신정책연구원



### □ 연구의 필요성

- 본 연구에서는 자율주행, 원격제어, 사용자의도 파악 등의 로봇 기술과 사용자 편의를 위 한 기구 시스템 설계, 인터페이스 기술 및 안전을 위한 제어 알고리즘을 개발하여 노인 -장애인의 삶의 질을 높이고자 함
- 이러한 연구는 가정에서 또는 병원과 같은 실내에서 보호자 의존도를 낮추어 사용자의 독 립적 일상생활의 범위를 확대할 수 있음

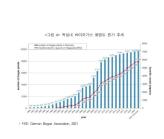


E. 사용자의 다양한 기능적 동작을 허용할 수 있는 구조 F. 보관 및 휴대가 용이한 컴팩드한 구조

## 개발기술 차별성 작성 예시

|       | As-Is(의료용 플라크 | To-Be(본 개발 기술)                                                                         |                                                                |
|-------|---------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 제조사   | 제품            | 비교 사항                                                                                  |                                                                |
| ㈜리노셈  | - max         | 용도: 의료용 수술기구 멸균<br>형식: 고정용<br>특징: 아르곤 or 헬륨 진공챔<br>버 필요<br>살균시간: 30~40분<br>가격: 수백~수천만원 | 면발광 플라즈마 발생 방식                                                 |
| ㈜플라즈맵 |               | 용도: 의료용 수술기구 멸균<br>형식: 고정용<br>특징: 진공펌프.진공챔버 필요<br>살균시간: 15분, 개별포장 살균<br>가격: 5~6백만원     | 용도 : 범용, 표면 살균<br>형식 : 휴대용<br>특징 : 고전압 인가, 면발광<br>살균시간 : 5초 이내 |

|                | As-Is(플라즈마 | 공기청정기)            | To-Be(본 개발 기술)   |
|----------------|------------|-------------------|------------------|
| 제조사            | 제품         | 비교 사항             | 면발광 플라즈마 발생 방식   |
|                |            | 용도 : 공기 청정(살균)    | 연결성 글다스마 결정 당식   |
| (*) ¬ 11] T ¬] |            | 형식 : 이동형          | 9                |
| ㈜코비플라          |            | 특징 : 플라즈마 jet 방식  | Feb.             |
| 텍              |            | 살균시간 : 플라즈마 케어 선택 |                  |
|                |            | 가격 : 백만원 이상       |                  |
|                |            | 용도 : 공기 살균        |                  |
|                |            | 형식 : 고정용          | 용도 : 범용, 표면 살균   |
| novaerus       |            | 특징 : 고전압 코일 통과 공기 | 형식 : 휴대용         |
| (US)           |            | 내 살균              | 특징 : 고전압 인가, 면발광 |
|                |            | 살균시간 : 플라즈마 작동시   | 살균시간 : 5초 이내     |
|                |            | 가격 : 수백만원         |                  |


|          | As-Is(UV LED គុំ | To-Be(본 개발 기술)     |                                         |
|----------|------------------|--------------------|-----------------------------------------|
| 제조사      | 제품               | 비교 사항              |                                         |
|          |                  | 용도 : 표면 살균         | 면발광 플라즈마 발생 방식                          |
|          | 1,               | 형식 : 휴대용           | © T                                     |
| ㈜유비크리    | 1 Mark           | 특징 : UV LED 점발광    | real real real real real real real real |
|          |                  | 살균시간 : 1분 ~ 2분     |                                         |
|          | 12.              | 가격: 10만원           |                                         |
|          | 177              | 용도 : 표면 살균         |                                         |
|          |                  | 형식 : 휴대용           | 용도 : 범용, 표면 살균                          |
| (T) CTIT | 세균 ZERO          | 특징 : 본체 장착용 덮개 필요. | 형식 : 휴대용                                |
| ㈜LG전자    | 0                | 점발광(LED 2개)        | 특징 : 고전압 인가, 면발광                        |
|          | -                | 살균시간 : 2분          | 살균시간 : 5초 이내                            |
|          | CONTAIN LED      | 가격 : 8만원(덮개 별도)    |                                         |

# 개발 기술의 필요성 및 차별성(독창성)

## 개발기술 필요성 작성 예시

### ① 바이오가스 개발의 필요성

- 아 바이오가스는 음식물쓰레기, 가축분뇨, 하수슬러지 등 유기성 폐자원으로부터 발생되는 가스로서, CO2 25~35%, 메탄(CH4) 55~70% 및 미량의 질소와 황화수소 등으로 구성돼 있으며, 유기성 폐기물의 처리와 신재생에너지원 확보를 병행할 수 있는 장점에 따라 그 필요성이 국내에서 나아가 전 세계적으로 크게 부각되고 있는 추세임
- o 2016년 이후 육상 폐기물의 해양투기가 전면 금지된 상황에서 유기성 폐기물의 처리비용이 급 증하고(2024년 기준 15만 원/톤), 이산화탄소 등 온실가스 대응기술의 필요성이 증가하면서 '유기성 폐자원'을 '폐기물'이 아닌 '바이오매스 에너지원'으로 인식하는 사고의 전환이 뒤따르고 있음
- 주로 무산소 상태에서 유기물을 분해시키는 혐기성 소화방식을 통해 얻는 바이오가스는 이산화 탄소 및 황 등을 정제하는 과정을 거쳐 전기, 가스, 열 공급 등에 필요한 연료로 사용되며, 고 농도 유기성 폐기물을 경제적으로 처리할 수 있을 뿐만 아니라 신재생에너지를 생산하는 공정 으로 화석 연료 의존도를 줄이고 에너지 자립도를 높일 수 있는 방안으로 제시되고 있음
- 특히, 음식쓰레기의 경우 기존의 사료화 또는 퇴비화는 활용측면의 한계가 있고, 음・폐수는 바이오가스화 이외에는 특별한 대안이 없으며, 가축분뇨의 바이오가스화는 약 3%만 이루어지고 있는 상황과 기존의 가축분뇨 처리가 액비화 및 종말처리장 중심으로 모두 내구 연한이 도래하고 다양한 문제점들이 나타남에 따라 바이오가스화에 대한 관심은 지속적으로 증대되고 있음
- 또한, 바이오가스 전력화기술은 유기성 폐기물의 혐기성 소화공정을 통해 발생한 메탄 주성분 가스를 통해 전기・열을 생산하고 연료 활용률이 80% 이상으로 기존재생 에너지(풍력, 태양광) 기술 대비 높다는 장점이 있음





| 구분          | 74         | 사료화       | 퇴·액비화       | 정화         | 바이오가스화    | 기타(소각) 등  |
|-------------|------------|-----------|-------------|------------|-----------|-----------|
| 21          | 6,537(100) | 189(2.9)  | 5,015(76.7) | 680(10.4)  | 375(5.7)  | 278(4.3)  |
| 음식문류(8%)    | 522(100)   | 189(36.2) | 199(38.1)   | -          | 65(12.5)  | 69(13.2)  |
| 가축분뇨(85.5%) | 5,593(100) |           | 4,816(86.1) | 680(12.2)- | 92(1.6)   | 5(0.1)    |
| 하수찌꺼기(6.5%) | 422(100)   |           | -           |            | 218(51.7) | 204(48.3) |

| 국가          | 인구수       | 바이오가스 시설 수 | 바이오가스 생산량 | 1인당 가스생산량 |
|-------------|-----------|------------|-----------|-----------|
| 독일(2015년)   | 8,300만명   | 8,98078    | 91억~/년    | 109m/ld   |
| 덴마크(2020년)  | 580만명     | 16078      | 9,3억~/년   | 160=:/년   |
| 영국(2015년)   | 6,722만명   | 15078      | 26억==/년   | 38.7=/년   |
| 이탈리아(2015년) | 5,9552198 | 1,0007H    | 21.8억㎡/년  | 36.3m/ld  |
| 한국(2020년)   | 5,5002198 | 11078      | 3.6억=/년   | 6.5m/kd   |

## 개발기술 필요성 작성 예시

### 1. 연구개발과제의 필요성

### □ 사회·경제적 배경

우리나라는 인구고령화의 심화 및 독거노인 증가 대비 보건의료인력의 부족이 심각해 노인 건강관리 지원에 대한 대비책 마련이 시급한 상황임. 또한, 신체적 건강관리를 넘어 정신적 건강관리까지 지원하며 삶의 질(QoLT)을 향상시키기 위한 대비책 마련이 시급함

- 인구고령화와 독거노인비율 증가
- 2022년 65세 이상 고령인구는 전체 인구의 17.5% (901.8만명). 노인 인구의 지속적인 증가세로 2025년에는 초고령사회(노인인구 비율: 20.3%)로 2030년에는 노인인구 24. 3%로 진입할 것으로 전망됨
- 1인 가구 수는 2016년에서 2020년 사이 연평균 5.33% 증가하였으며, 전체가구에서 1 인 가구가 차지하는 비중 또한 27.9%에서 31.7%로 증가함

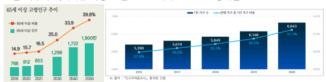



그림 1 고령인구 및 1인가구 현황과 비중 추이 (출처 : 건강보험공단 및 통계청)

- 노인의료비 증가와 보건의료인력 부족
- 2019년 65세 이상 고령자의 1인당 진료비는 479만 6천 원, 1인당 본인부담 의료비는 111만
   7천 원임. 2060년 노인 진료비는 현재의 19.7배인 390조 7,949억원에 이를 것으로 예측됨
- 국내 의사(OECD평균: 1,000명당 3.6명, 우리나라: 1,000명당 2.5명), 간호인력(OECD 평균: 1,000명당 7.9명, 우리나라: 1,000명당 4.2명) 및 돌봄인력(OECD평균: 노인 100 명당 6.0명, 우리나라: 노인 100명당 4.3명)의 수는 OECD 평균대비 모두 부족함

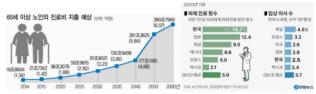



그림 2 노인 진료비 추이 및 보건의료인력 현황 (출처 : 2021 고령자 통계)

### □ 과학·산업적 배경

보행보조기기에 의한 건강관리가 국내 보건의료인력 부족문제를 완화하는 동시에 노인·장 애인의 사회참여 기회 항상에 기여할 것으로 예측. 전동휠체어는 많이 개발되고 있으나 보 행보조 분야에 대한 개발은 미흡한 실정

- 이동보조기기
- 보행보조기, 노인보행차, 실버카 등으로 불리며, 걸음을 보조하거나 보행훈련목적으로 많이 사용됨

# 개발 기술의 필요성 및 차별성(독창성)

Ⅱ. 작성 방법

- **◆** 자료조사
  - 1. 문헌 조사(기술 트렌드 파악)
  - ☑ 유관기관 홈페이지(디자인 분야를 포함한 각 기술분야 바이오, 기후기술, 배터리 등)
  - ☑ 정책 및 기획기관 홈페이지(STEPI, KISTEP, KEI, KOSI 등 정책연구원 및 진흥원, 협회 등)
    - 2. 특허 & 논문조사(구체적인 기술동향)

☑ 무료: 키프리스(KIPRIS, http://kipris.or.kr)

☑ 유료: 윕스온(WIPSON, https://www.wipson.com), 키워트(KEYWERT, https://www.keywert.com)

## 3. 산업 현황 및 동향 조사

☑ 중소기업 전략기술 로드맵(https://smroadmap.smtech.go.kr)







# 03

# 개발 기술 내용 및 계획

# 개발기술 내용 작성 예시

### 4.2 기술개발 내용

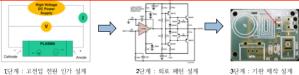
( 개발내용 : 저온 플라즈마를 이용한 휴대용 살균장치 )

개발 (1):

고전압 변환 전원공급부

및 고전압 인가 기판 설

고전압 전원 변환이 가능한 전원공급부 설계


- 애노드, 캐소드 전극과 연결되어 4kV 이상의 고전압 전원 변환 가능한 전원공급부 설계

- 전원공급부의 제어부와 출력부에 각각 MCU를 구성

전원공급부가 구비된 기판의 설계

- 고전압 인가 가능한 PCB 및 패턴 설계 - 가정용전원의 고전압 전원 변환 회로 설계
- 고전압에 견딜 수 있는 기판의 재질, 두께 선정





<그림 3> 고전압 인가 기판 설계 프로세스

- 고전압 변환 전원공급부 개발
- 고주파 인버터 발생기(부스터) 또는 컨버터를 이용한 전 압 증폭 방식 적용으로 플라즈마 발생에 적절한 임계 고전 압(2kV ~ 5kV) 선정, 인가전압을 DC 또는 AC의 5V ~ 240V 정도의 범위 내에서 조절
- AC/DC 입력 전압의 고전압 변환은 커패시터의 용량 및 수량에 따라 전류 및 소비전력 결정하고, 고전압 고효율 컨 버터 모듈 적용으로 고전압 DC 전력 분배안 설계



- 고전압 인가 회로 패턴 설계
- 고주파 인버터, 고전압 컨버터 모듈, 커패시터 및 MCU 등 부품 스펙에 따라 배치

## 개발기술 내용 작성 예시

### 설계

- 임피던스 및 open/short 고려한 부품 실장 구조 설계, 케이싱 제작 구조와 연계하여 회로패턴 설계안 도인

### 고전압 전원공급부 설계 프로세스

• 저온 폭간즈마 발생 양계 고전안 검정

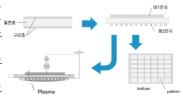
교체형 면발생

플라즈마 모듈 개발

- 인가전류 설정에 따른 커페시터 용량/극기 설정
- 순간 소비전력 설계

순간 소비전력을 낮추는 설계안 적용 예정

고전압 변환 인가시. 컴팩트한 플라즈마 발생을 휴대용 사이즈의 위한 <u>진공펌프 및</u> 케이싱 설계 가능


Ⅱ. 작성 방법

개발 (2) :

- 플라즈마의 면 발생을 위한 플라즈마 방사 모듈 개발
- 반도체 및 기판의 제조 공정을 응용한 플라즈마 발생 모듈 제조공정 채택
- 포토레지스트와 마스크를 이용한 플라즈마의 면 발생 패턴 설계
- 플라즈마 면 발생 패턴의 최적화 설계
- 패턴의 형태, 프라즈마 발생 면의 크기(면적) 등 살균 효율을 고려한 패턴
- 면 발생 플라즈마 패턴 설계시 기판 제조 공정 활용
- 절연체를 사이에 두고 전극 적층
- 포토레지스트 공정을 통한 마스크 패턴 형성
- 식각, 소성 및 자외선 조사를 통한 전극 형성



- 절연재 상.하면에 구리층을 도포하고, 마스 크를 이용한 포토레지스트 공정을 통해 상부 표여표. 전극층(제1전극)과 하부에 장벽 형태로 구분 된 플라즈마발생부(제2전극)을 구성
- 제1전극과 제2전극에 고전압 인가시 플라 즈마발생부 장벽 사이에서 플라즈마 발생
- 장벽의 형태는 격벽 구조, 일자 구조, 점자 구조 등 일정 패턴으로 개발



# 개발 기술 내용 및 계획

## 개발기술 내용 작성 예시







예) 플라즈마의 면 발생 패턴

<그림 5> 플라즈마 면 발생 패턴 제작 프로세스

- 면발생 플라즈마 발생부가 하면으로 노출된 <u>카트리지 형태의 모듈형으로 개발</u>하고, 모듈 외부에 (+), (-) 접속 단자를 구성



### ㅇ 개발 (3):

시제품 제작 및 테스트

- ㅇ 휴대 가능한 케이싱 설계 및 제작
- 휴대가 용이한 컴팩트한 사이즈의 케이스 설계 및 제작
- 면 발생 플라즈마의 노출 범위 결정
- 각속도센서(자이로센서)의 설치로 일정 범위의 각도를 벗어날 경우 플라즈마 발생 차단





<그림 6> 케이싱 설계 개념 [각속도센서 적용으로 플라즈마의 하향 조사만 가능]

- 1단계 : 기판 회로패턴 및 부품 배치 설계안에 따른 케이스의 외형 구조 설계
- 2단계 : 면발생 플라즈마 발생 <u>모듈의 구조 및 모듈 장착 방식과 연계한 플라즈마 조</u> <u>사 위치 결정 [</u>조사램프창, 손잡이, 전원 위치 등의 배치안 설계]
- 3단계 : 사용자 편의성 및 안전성 고려한 디자인 설계 및 제작, 작동 UX/UI 디자인 및 재질 선정

### 기획(4)

ICT 적용 기술 기획

- 케이스 설치 가능한 부가기능 기획 및 설계
- ICT 기능 결합
- ICT 기능 중 카메라, 블루투스 및 와이파이 모듈을 통한 영상 송출과 빅데이터 활용
- 빅데이터 정보를 이용한 살균 및 멸균 데이터의 취합으로 차기 개발제품의 개발 기획에 반영

최종 목표 (제품)



단계별 세부 목표



연구의 주요 내용

Ⅱ. 작성 방법

반대 방향의 인식(문제)으로도 설계 가능



- ☑ 자사가 주력(잘하는)인 부분과 부족한 분야를 파악
- ☑ 자사의 경영전략/기술개발 전략과 연계하여 개발기술의 범위를 조정
- ☑ 사업화 전략의 수립이 가능한지를 판단

03

# 개발 기술 내용 및 계획

Ⅱ. 작성 방법

- → 공동연구 및 위탁연구 등 컨소시엄 형태의연구개발사업시 각 연구기관의 역할을 명확히 작성
- ◆ 실증(PoC) 단계가 중요시되고 있고, 디자인진흥원도 R&D에서 사용자 검증을 요구하고 있어, 샘플과 모수를 적절하게 구성 필요

## 작성 예시

## 연구기관② - 비즈니스모델 수립

○ (공동연구개발과제2): 개발기술 사업화를 위한 비즈니즈모델(BM) 수립

- 실외용 및 실내용 노인·장애인용 이동보조기기에 대한 STP(Segmentation, Targeting, Positioning) 기반한 사업화 가능성 및 타당성 검토
- 시장환경분석, 시장진입가능성, 진입을 위한 비즈니스 아이디어, 각 아이디어 따라 시나 리오(BM1, BM2, BM3..) 기반으로 최적화된 BM전략 제시



## 연구기관① - 현장실증

연구개발 내용 3 : 원격조종 및 실내외 주행 보조기능

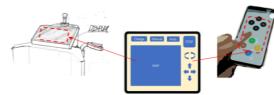



그림 25 조종기/ 디스플레이 컨셉

- 앱을 통한 원격조종 기능
- 보조기기의 화면창 또는 조이스틱을 통한 조종



그림 26 실내외 이동 보조 기능

- GPS 기반 실외 목적지 이동 보조
- · 실외 장애물 회피 및 네이게이션 기능
- 실내 목적지 이동 보조
  - · 실내 QR코드, 마커를 통한 위치 인식 및 목적지 이동
  - · 서버 원격제어 명령을 통한 위치 복귀 기능
- (공동연구개발과제1): 실외용 및 실내용 노인·장애인용 이동보조기기 사용성 평가 및 장 기 현장실증
- 연구개발 내용 1: 실외용 및 실내용 노인·장애인용 이동보조기기 고도화를 위한 사용 성 평가 수행(만족도 및 개선점 조사)
- 개발된 시제품을 공학전문가, 임상전문가 및 사용자를 통해 제품의 고도화 및 상용화를 위해 필요한 개선 사항을 도출하고, 도출된 개선 요구사항을 최종 제품 개발에 반영
- 연구개발 내용 2: 실외용 및 실내용 노인·장애인용 이동보조기기 장기 현장실증 수행 (기간: 한달, 인원: 20명)
- 실외용 노인·장애인용 이동보조기기: 병원 또는 시설 등에 실외용 노인·장애인용 이 동보조기기 배치하고 물리치료사의 관리하에 장기간 현장실증 수행(진천요양원, 청주 성모병원, 청주첼로병원 섭외 완료)
- 실내용 노인·장애인용 이동보조기기: 충북 증평군 지역 내 경로당에 실내용 노인·장애인용 이동보조기기를 배치하고 연구원의 관리하에 장기간 현장실증 수행(증평보건소와 협의 중)

# 개발 기술 내용 및 계획

Ⅱ. 작성 방법

## 4.1 기술개발 최종목표

<표 7> 성능지표 목표 및 측정방법

| (표 / 성당시표 국표 및 국정성립   |                |                                                               |                                   |                                              |                                         |                                       |  |  |  |  |
|-----------------------|----------------|---------------------------------------------------------------|-----------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------|--|--|--|--|
|                       | < 주요 성능지표 개요 > |                                                               |                                   |                                              |                                         |                                       |  |  |  |  |
| 주요 성능지표 <sup>1)</sup> | 단위             | 최종 개발목표 <sup>학</sup>                                          | 기술개발전<br>수준                       | 세계최고수준 또는<br>수요처 요구수준 <sup>9</sup><br>(해당기업) | 전체항목에서<br>차지하는<br>비중 <sup>(1)</sup> (%) | 평가방법 <sup>5)</sup>                    |  |  |  |  |
| 플라즈마                  | sec<br>Log     | 5<br>>Log4.00                                                 | 60<br>>Log4.0                     |                                              |                                         | KTK(한국회학융합시험<br>연구원)                  |  |  |  |  |
| 조사시간                  | (%)<br>mm      | (99.99%)<br>> 10mm                                            | (99.99%)<br>>10mm                 | RayVio Corp(미국)                              | 40                                      | (KOLAS 인정기판)                          |  |  |  |  |
| 살균대상균 및<br>살균바이러스     | n              | 살균대상 :<br>황색포도알균,<br>장티푸스균,<br>비브리오패혈증균<br>독감바이러스<br>SARS-CoV | -                                 | RayVio Corp(미국)                              | 20                                      | K.IR(한국화학융합시험<br>연구원)<br>(KOLAS 인정기판) |  |  |  |  |
| 안정성                   | 0              | 발광면 직하방<br>15°, 30°, 45°,<br>60°(완전꺼짐)<br>누설, 누전 차단           | 90°<br>전원차단                       | SEOUIL VIOSIS(한국)                            | 20                                      | KCL(한국건설생활환경<br>시함연구원)                |  |  |  |  |
| 정상작동률                 | %              | 99%                                                           | 99%                               | LG이노텍(한국)                                    | 15                                      | KCL(한국건설생활환경<br>시험연구원)                |  |  |  |  |
| 내구성                   | %              | 10,000회 점등시<br>발광성능 100%<br>유지                                | 10,000회<br>점등시<br>발광성능<br>100% 유지 | LG이노텍(한국)                                    | 15                                      | K <b>CL</b> (한국건설생활환경<br>시함연구원)       |  |  |  |  |



|                      | < 시료 정의 및 측정방법 >                                 |                               |                                                                                                                                                                                                                                                                 |  |  |  |  |
|----------------------|--------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 주요 성능지표              | 시료정의                                             | 측정시료 수 <sup>0</sup><br>(n≥5개) | 측정방법 <sup>7</sup> (규격, 환경, 결과치 계산 등)                                                                                                                                                                                                                            |  |  |  |  |
| 플라즈마<br>조사시간         | 일정간격의<br>조사거리에서<br>플라즈마를 조사한<br>시간에 따른 살균럭<br>평가 | 5©]                           | 조사시간: 세균 및 바이러스 등 소독제 유효희석배수 결정시험법에 의한 세균 및 바이러스 배양 후 플라즈마 발생시간에 따른 세균 및 바이러스의 감소율 99.99%에 이르는 조사시간을 산출 살균력: 세균 및 바이러스 등 소독제 유효희석배수 결정시험법에 의한 5초 이내 경과 후 배양된 세균 및 바이러스의 세균 감소율을 시험 조사거리: 세균 및 바이러스 감소율 Log4.0(99.99%)에 이르는 플라즈마 의 조사각도와 조사면적에 따른 삼각함수 계산에 의해 설정 |  |  |  |  |
| 살균대상균 및<br>살균바이러스    | 살균이 되는 세균 및<br>바이러스 종류                           | 5종 이상                         | 황색포도알균, 장티푸스균, 비브리오패혈증균, 독감바이러스,<br>SARS-CoV 등 99% 살균                                                                                                                                                                                                           |  |  |  |  |
| 안정성                  | 저온 플라즈마의 인체<br>안정성 평가                            | 5 set                         | 감전보호(누설전류, 누전 위험 여부, KC 60598-2-1)<br>플라즈마를 인체애 일정시간 노출시켰을 때 안정평 평가                                                                                                                                                                                             |  |  |  |  |
| 정상작동률                | 장치의 스위치가<br>긴급상황시<br>정상적으로<br>작동하는지에<br>대한평가     | 5set                          | 자이로센서 작동 여부(직하방 기준 좌우 반경 60도 회전시<br>완전꺼짐 확인)<br>과전압, 과전류 시 비상스위치 작동 여부                                                                                                                                                                                          |  |  |  |  |
| 내구성                  | 플라즈마 발생모듈<br>수명 평가                               | 5회                            | 10,000회 점등 및 소등 반복(KS C 7653 준용) 했을 때 플<br>라즈마 발광성능 100% 유지                                                                                                                                                                                                     |  |  |  |  |
| * 시료수 5개 미 이 예) 해당사항 | 만(n<5개) 지표 사유<br>없음                              | •                             |                                                                                                                                                                                                                                                                 |  |  |  |  |

# 주안점

- ☑ 최종 개발제품의 성능목표와 스펙은 실현 가능한 적정한 수준을 고려
- ☑ 개발가중치는 개발비와 연계하여 산정
- ☑ 최종 개발제품의 성능 수준은 출시된 경쟁 제품과 수요기반(수요처) 요구사항 반영

성능 목표 수준과 선정 가능성 (목표의 차별성, 혁신성)의 적절한 조율 필요

# Ⅱ. 작성 방법

# 사업화 계획

## 사업화 계획 작성 예시

### 1. 사업화 목표

(단위: 백만원, %)

| 사업화 성과          | 세부 성과지표                                | (2021)년<br>(개발종료<br>해당년) | (2022)년<br>(개발종료 후<br>1년) | (2023)년<br>(개발종료 후<br>2년) | (2024)년<br>(개발종료 후<br>3년) | (2025)년<br>(개발종료 후<br>4년) | (2026)년<br>(개발종료 후<br>5년) |
|-----------------|----------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 기업 전체<br>성장     | 예상<br>총매출액(A)                          | 300                      | 600                       | 1,500                     | 2,500                     | 4,000                     | 5,500                     |
| 개발기술의<br>사업화 성과 | 예상<br>연구개발결과물<br>제품 매출액(B)             | 70                       | 150                       | 400                       | 1,000                     | 2,000                     | 3,000                     |
|                 | 연구개발결과물<br>제품 점유비율(C)<br>(C=(B/A)*100) | 23.3                     | 25                        | 26.6                      | 40                        | 50                        | 54.5                      |

### **1.1** 사업화 목표 산정 근거

| 사업화 성과               | 세부 성과지표                 | 산정근거                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 참고자료명                                    |
|----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 매출액 등<br>기업 전체<br>성장 | 예상<br>총매출액              | - 법인 구성원의 창업 전 기술전문 분야의 기술개발<br>용역을 통해 초기 매출 및 지속적인 매출액 증가<br>예상<br>- 연구개발 결과물이 개인 위생을 중요시하는 시대<br>적 특성을 반영한 꾸준한 매출 증가 예상                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 기존 기술개발별<br>매출현황 및<br>연구개발결과물<br>의 성장 추이 |
| 개발기술의<br>사업화 성과      | 예상<br>연구개발결과물<br>제품 매출액 | * 목표시장의 규모 및 성장성  - 현재 플라즈마를 이용한 휴대용 살균장치가 출시<br>되기 전이므로, 제품이 출시되고 있는 LED 살균<br>기의 시장을 참조 제품이 출시되고 있는 LED 살균<br>기의 시장을 참조<br>" 주요판매처별 판매예상금액  - 태리점 및 오픈마켓을 통한 온/오프라인 판매를<br>통해 판매처 확대  - 초기, 개발비용을 포함하여 제품 단가를 채정, 중<br>기 이후 제품의 안정화 및 대량 생산 진행되면<br>적정한 제품단가를 책정하여 전세계적 보급 확대<br>면발생 플라즈마 모듈을 교체형으로 제작하여 모<br>들 공급과 AS로 추가 매출 기대<br>자기 개발 버전에 ICT 기술 결합과 취합되는 데<br>이터 활용 연계 사업으로 추가 매출 확대 기대<br>제품 단가<br>초기(20년~22년): 제품당 약 10만원<br>중기(23년 이후): 제품당 약 10만원<br>중기(23년 이후): 제품당 7~8만원<br>교체형 플라즈마 발생 모듈 : 4만원<br>주요 휴대용 상교기 경쟁사와의 차별성<br>주요 경쟁사들은 UV LED를 이용한 제품을 생산<br>하는 중소기업 및 스타트업 제품이 대다수<br>스타트업 중 유비크리됐는 19년 작다즈를 통해<br>크라우드편당을 진행하고 1700%의 편당을 달성<br>본 연구개발물로 제품화된 플라즈마 이용 살균<br>제품의 경우에는 살균기 분야의 신기술 인증과<br>더불어 투자유치를 통해 추가 기술개발에 따른<br>제품의 단양화에 의해 차별적 경쟁력 확보 | 중소기업<br>기술로드맵<br>LED인사이드<br>(2019)       |

## 14 국내·외 주요 경쟁사(G마켓, 옥션 등 오픈마켓 제시 가격 및 판매액 예측치) <표 8> 저온 플라즈마 기술 적용 제품

| 경쟁사명    | 제품명                               | 제품사진 | 판매가격<br>(천원) | 연 판매액<br>(천원)              |
|---------|-----------------------------------|------|--------------|----------------------------|
| 유진 D&D  | 플라즈마 공기청정기<br>EUG-A1000           |      | 400          | 약 150,000                  |
| (주)하니메드 | 의료용 저온 플라즈마<br>멸균기<br>EXPlasma Z7 | I    | 8.800        | 약 1,000,000                |
| ㈜다우코리아  | 플라즈마<br>공기살균기(벽걸이형)               |      | 약 1,000      | 공공기관 납품<br>(판매 미비, 예측 어려움) |
| 미인스시템즈  | UV-Gan                            |      | 12,9         | 크라우드 편딩<br>3,148%          |

- ☑ 시장조사 & 기술동향 조사 시 수집된 자료를 연계 및 활용 가능
- ☑ 통상 매출목표로만 사업화 성과를 기재하고 있으나, 그 내용을 뒷받침하는 근거를 제시
  - → 계획서에 제안 근거를 기재하는 항목이 없더라도 근거 제시에 대한 내용은 발표시 주요 질문사항이므로 매출 근거를 준비해야 함)

# II. 작성 방법

# 사업화 계획

## 사업화 계획 작성 예시

### 2. 사업화 계획

## 2.1 제품화 및 양산, 판로개척

○제품화 및 양산

| 해당년도 | 2020년                               | 2021년                                                                                           | 2022년                                                          | 2023년                                                                             | 2024년                                                                |
|------|-------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 목 표  | 개발 및<br>사업화 기획                      | 시제품 제작<br>및 검증                                                                                  | 제품 상용화<br>및 고도화                                                | 공유기업 및<br>다중이용시설<br>대상 중형 제품<br>개발                                                | 식품 살균,<br>피부미용 및<br>의료용기기 멸균<br>제품 개발                                |
| 내 용  | 사업화 타당성<br>조사<br>• 수요대상 개발<br>및 수요자 | <ul> <li>휴대용 제품<br/>개발 완료</li> <li>상용화 위한<br/>제품 수정<br/>보완</li> <li>ICT 기술<br/>융합 기획</li> </ul> | 개발제품<br>상용화     제품의 크기별,<br>용도별 다양화     ICT 기술<br>접목한 제품<br>개발 | <ul> <li>수요처 다양화</li> <li>공유기업 및 다중이용시설의 최적화 제품 개발</li> <li>중형 제품으로 확장</li> </ul> | 식품 및     지부미용 등     제품군 다양화      의료용기기 등     등 멸균용     중대형 제품     개발 |

### ㅇ 판로개척

- 1) R&D 및 마케팅 분야
- 추가 정부 R&D 확보를 통한 기술 개선 및 제품 고도화
- 마케팅 전문가 영입을 통한 목표 시장 분석과 온/오프라인 유통망 개척
- 유통 대기업 협력 방안 추진
- 정부 지원 수출 인큐베이터 사업 적극 활용
- 2) 기술개발 단계별 시장 개척 노력
- 1단계 : 과제 진행중 및 종료후 바이오/헬스케어 산업 전시회 적극 참여
- 2단계: 온라인 마케팅(홈페이지, 뉴스레터, 블로그, 페이스북, 유투브 등) 국내 오픈마켓(옥션, 지마켓, 쿠팡 등) 홈쇼핑 시장 진출 NEP 인증을 통한 조달물품 등록

대리점 개설, AS 추진 및 플라즈마 발생 모듈 보급 사업 추진 해외 메디컬디바이 유통 채널과 총판 및 MOU 추진

- 3단계: 미국 FDA 인증, 해외 바이오/헬스케어 전문 전시회 및 CES 참여 해외수출 추진(Kotra 지원 연계)

해외 언론(뉴욕포스트 등) 제품 마케팅 추진

(US)아마존, Stacksocial, (CN)알리바바 등 해외 유명 오픈마켓을 통한 제품

판매

## 사업화 계획 작성 예시

## ○ 인증 확보 방안

<표 9> 제품 개발에 따른 인증 확보 단계

| 구분    | 국가<br>별                       |      | 인 <del>증종</del> 류    | 신청 방법 및 준비 항목                                                |
|-------|-------------------------------|------|----------------------|--------------------------------------------------------------|
| 45770 | 7.1                           | 기업인증 | 부설연구소(신청 중)          | KOTTA 신청서 제출                                                 |
| 1단계   | 각                             | 제품인증 | KC인증, KS EMC         | 제품/부품 매뉴얼,<br>KCL(한국건설생활환경시험연구원) 신청                          |
|       | 고내                            | 기업인증 | 벤쳐기업 등록              | 특허 등록, 사업성 평가, 중기부 신청                                        |
|       | 국내 식약처 MFDS<br>제품인증 신뢰성 인증 시험 |      |                      | www.mfds.go.kr, 품목허가 신고서 제출                                  |
| 2단계   | 미국                            | 제품인증 | FDA 인증               | <u>www.accessdata.fda.gov</u> 등급확인<br>제조업체 등록 및 510(k) 심사 요청 |
|       | 중국                            | 제품인증 | CCC 강제인증             | www.csp.gov.cn,<br>중문 제품메뉴얼, 회로도, 조립도, 부품리스트<br>제출           |
|       | 국내                            | 기업인증 | INNOBIZ, ISO9001     | 중소기업벤처부 신청<br>사업계획서, 현장평가                                    |
| 3단계   | 미국                            | 제품인증 | FCC 인증<br>GLP(안정성평가) | JOT 기능 적용시 필요<br><u>www.gullfoss2.fcc.gov</u>                |
|       | 유럽                            | 제품인증 | CE 인증                | <u>http://certinfo.or.kr</u><br>기술문서 제출, 적합성 확인              |

### <표 10> 기술개발 후 국내 외 주요 판매처 현황

| 판매처             | 국가 명 | 판매 단가<br>(천원) | 예상 연간<br>판매량(개) | 예상<br>판매기간(년) | 예상 총판매금<br>(천원) | 관련제품                           |
|-----------------|------|---------------|-----------------|---------------|-----------------|--------------------------------|
| 온라인<br>오픈마켓     | 대한민국 | 100           | 20,000          | 10            | 20,000,000      | 플라즈마 발생<br>휴대용 살균기             |
| 홈쇼핑 및<br>본사 사이트 | 대한민국 | 100           | 20,000          | 5             | 10,000,000      | 플라즈마 발생<br>휴대용 살균기             |
| Amazon, Ebay    | 미국   | 100           | 10,000          | 5             | 5,000,000       | 플라즈마 발생<br>휴대용 살균기             |
| 알리바바            | 중국   | 100           | 40,000          | 5             | 20,000,000      | 플라즈마 발생<br>휴대용 살균기             |
| 대리점 &<br>오픈마켓   | 대한민국 | 1,500         | 100             | 10            | 1,500,000       | 기업 & 공공기관<br>대상 중형<br>플라즈마 살균기 |
| 대리점             | 대한민국 | 10,000        | 100             | 5             | 5,000,000       | 식품 살균 및<br>의료용 플라즈마<br>멸균장치    |



# Ⅱ. 작성 방법

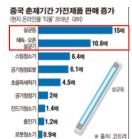
# 사업화 계획

## 사업화 계획 작성 예시

## 2.2 사업화를 위한 후속 투자계획

| 구   | 분      | (2021)년<br>(개발종료<br>해당년) | (2022)년<br>(종료 후 1년) | (2023)년<br>(종료 후 2년) | (2024)년<br>(종료 후 3년)                   | (2025)년<br>(종료 후 4년) | (2026)년<br>(종료 후 5년) |  |  |  |
|-----|--------|--------------------------|----------------------|----------------------|----------------------------------------|----------------------|----------------------|--|--|--|
| 사업회 | 제품명    | 저온 플라즈마<br>살군            |                      |                      |                                        |                      |                      |  |  |  |
| 사업회 | 제품명    |                          |                      |                      | 업 대상 중형 플라즈마<br>살균기                    |                      |                      |  |  |  |
| 사업회 | 제품명    |                          |                      |                      | 식품 및 생체(피부) 살균 및<br>의료용 플라즈마 살균 및 멸균장치 |                      |                      |  |  |  |
| 투자계 | 획(백만원) | 200                      | 300                  | 500                  | 700                                    | 1,000                | 1,500                |  |  |  |

- 1단계(~22년): 크라우드펀딩을 및 엔젤투자 자금 확보
- 2단계(~24년): K-STARTUP, 중진공, 기보 및 신보 등을 통한 투자 자금 확보에 의한 기술개발 능력 향상
- 3단계(~25년): 정부 또는 민간 데모데이 IR을 통한 시리즈 A, B 유치를 통한 생산능력 향상 및 대량생산에 의한 원가경쟁력 확보


## 23 해외시장 진출 계획

- 공공기관의 해외수출지원사이트로의 적용 추진
  - G-pass 해외조달지원센터 및 한국대한무역투자진흥공사(KOTRA) 등의 해외 진출 프로그램을 활용하여, 수출기업 제품 매뉴얼 및 전시 솔루션으로 제공 추진
- 해외시장 진입을 통하여 해외 현지 업체와의 교류

### <표 11> 해외 목표시장 진출 전략

|     | - 22 11 1-10 22 21                                  |
|-----|-----------------------------------------------------|
| 국가  | 진출 전략                                               |
|     | - 2020년 헬스케어산업 규모를 8조 위안으로 확대 계획, 미국 다음의 세계 2위 시장으로 |
|     | 부상                                                  |
| 중 국 | - 현지 유통채널 또는 의료시장(병원, 피부샵 등)의 파트너십을 통한 전략적 제휴를 통한   |
| 0 1 | 진출                                                  |
|     | - CCC 강제인증 완료 후, 오픈마켓(알리바바), 홈쇼핑 채널을 통한 대중 판매 확대    |
|     | - 중국 투자기관을 통한 투자 유치                                 |
|     | - 피트니스와 생활보조 분야의 디지털 헬스케어 제품이 주로 사용되고 판매되고 있음       |
|     | - 모바일 기술 발달에 의해 건강관리용 헬스케어 기기 개발과 출시 활발             |
|     | - 코로나19의 최대 확산국으로 미국 기업과의 파트너십을 통해 진출 방안 모색 필요      |
| 미국  | - 언어 장벽을 고려, 한국 헬스케어 제품에 신뢰가 높은 교포사회를 중심으로 오프라인 판   |
|     | 매 우선 전략도 가능                                         |
|     | - FDA 인증 후, 아마존 진출전략 외에도 한국에 비해 판매 강점을 가진 쇼셜마케팅을 활  |
|     | 용가능                                                 |

## 사업화 계획 작성 예시





<그림 8> 최근 중국 및 대만 살균 관련 제품 판매 추이

## 3. 고용유지 및 고용창출 계획

- (기술개발) 고용창출 효과 및 신규인력 채용 관련계획
- 위생 안전 제품 개발을 위한 개발자 1명 채용
- 휴대용 살균기의 편의성 및 사용성을 고려한 ICT 융합 개발자 1명 채용
- (복리후생 및 인력육성) 고용유지/신규인력 교육을 위한 관련방안 및 계획마련
- 포상 및 지원
- · 기술개발 관련 아이디어 및 특허 출원 제안/적용 시 포상
- · 개발업무 효율향상을 위한 제언 적용 시 포상
- 기술인력 육성
- · 업무 분장 프로세스 확립 및 지속적 사내교육
- · 연구개발 관련 전문기관 등의 교육훈련 프로그램 및 세미나 참여지원

### <표 12> 고용 현황 및 향후 계획

| 구 분     | ( 2020 )년<br>(기술개발 전년) | ( 2021 )년<br>(개발종료 해당년) | ( 2022 )년<br>(개발종료 후 1년) | ( 2023 )년<br>(개발종료 후 2년) |
|---------|------------------------|-------------------------|--------------------------|--------------------------|
| 신규고용(명) | 2                      | 3                       | 3                        | 3                        |
| 상시고용(명) | 4                      | 6                       | 9                        | 12                       |

# Ⅱ. 작성 방법

# 연구개발팀 및 컨소시엄 구성







- ☑ 연구개발인력의 적절한 구성과 전문성 강조
- ☑ 부족한 부분은 외부인력 또는 전문가 활용

- ☑ 사업비의 일정 부분 지출은 감수
- ☑ 연구개발과제의 추진 전략을 전체적인 로드맵으로 표현

# Ⅱ. 작성 방법

# R&D 및 사업 추진 계획

## 추진 계획 작성 예시

## 4.4 세부 추진일정

| 세부 개발내용                  | 수행기관<br>(주관/참여 |   |   |   |   |   |   |   |   | 비고 |    |    |    |    |
|--------------------------|----------------|---|---|---|---|---|---|---|---|----|----|----|----|----|
| 세구 개월대용                  | /수요처/<br>위탁 등) | 1 | 2 | 3 | 4 | ь | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 미꼬 |
| 1. 수행계획 수립 및 자료조사        | 주관기관           |   |   |   |   |   |   |   |   |    |    |    |    |    |
| 2. 기판 설계 및 제작            | 주관기관           |   |   |   |   |   |   |   |   |    |    |    |    |    |
| 3. 플라즈마 면 발생 패턴 설계       | 주관기관           |   |   |   |   |   |   |   |   |    |    |    |    |    |
| 4. 플라즈마 발생 모듈 설계 및<br>제작 | 주관기관           |   |   |   |   |   |   |   |   |    |    |    |    |    |
| 5. 시제품 설계 및 목업 제작        | 주관기관<br>외주용역   |   |   |   |   |   |   |   |   |    |    |    |    |    |
| 6. 플라즈마 면 발생 패턴 수정 반영    | 주관기관           |   |   |   |   |   |   |   |   |    |    |    |    |    |
| 7. 시제품 제작                | 외주용역           |   |   |   |   |   |   |   |   |    |    |    |    |    |
| 8. 시제품 테스트 및 기관의뢰 시<br>험 | 주관기관           |   |   |   |   |   |   |   |   |    |    |    |    |    |

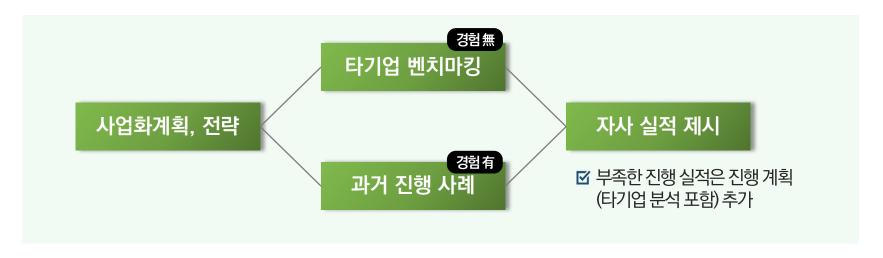
## 43 수행기관별 업무분장

| 수행기관                                                     | 담당 기술개발 내용                                                                                                                                                                                                    | 기술개발 비중(%) |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 주관기관                                                     | 지온 플라즈마를 이용한 휴대용 살균장치의 내부 구성<br>요소 개발 - 고전압 전원 변환이 가능한 전원공급부 개발 - 고전압 전원에 적합한 기판 설계 및 제작 - 면 발생 플라즈마의 패턴 설계 및 제작 - 저온 플라즈마의 방사가 가능한 면 발생 플라즈마<br>모듈의 개발<br>휴대용 살균장치의 시제품 제작 및 테스트<br>- 시제품 제작을 위한 살균장치 케이스 설계 | 72%        |
| 외주용역처리<br>KTR(한국화학융합시험연<br>구원)<br>KCL(한국건설생활환경시<br>험연구원) | - 기술개발 결과물 시험인증기관 시험성적 의뢰                                                                                                                                                                                     | 10%        |
| 외주용역처리                                                   | - 시제품 목업 제작 및 목업 디자인 설계<br>- 케이스 재료, 재질, 형상 등 optimizing                                                                                                                                                      | 18%        |
| 총 계                                                      |                                                                                                                                                                                                               | 100%       |

## 5. 연구시설·장비보유 및 구입현황

| 구분         | 분  | 시설 및 장비명                            | 규 격 | 구입<br>가격*<br>(백만원) | 구입<br>년도 | 용 도<br>(구입사유)                              | 보유기관<br>(참여형태) |
|------------|----|-------------------------------------|-----|--------------------|----------|--------------------------------------------|----------------|
| 기보유        | 자사 | 오토캐드                                | 1   | 2.0                | 2020     | 기구설계                                       | 주관기관           |
|            |    | 디자이너                                | 1   | 4.0                | 2020     | 디자인                                        | 주관기관           |
| 시설・        | 보유 | 소계                                  |     | 6.0                |          |                                            |                |
| 장비         |    | 소계                                  |     | 6.0                |          |                                            |                |
| 신규         | 임차 | 플라즈마 모듈 개발장치<br>(노광장치)              | 1   | 9.0                | 2020     | 프라즈마 면발생<br>모듈 시제품<br>제작                   | 주관기관           |
|            |    | 소계                                  |     | 9.0                |          |                                            |                |
| 확보가<br>필요한 |    | PCB Simulation<br>(Mentor Graphics) | 1   | 6.0                | 2020     | PCB 설계<br>(제품 upgrade)                     | 주관기관           |
| 시설·<br>장비  | 구입 | 3D 프린터                              | 1   | 6.0                | 2020     | 케이스 및 모듈<br>시제품 제작<br>(고용량/고정밀<br>αpgrade) | 주관기관           |
|            |    | 소계                                  |     | 12.0               |          |                                            |                |

구밉가격은 부가가치세 포함 가격임




- ☑ 적절한 사업비의 사용과 예정 비용 산정
- ☑ 장비 및 연구기자재의 활용 목적에 따라 자산 이용 및 구입 비용 구분
- ☑ 직접비(인건비), 간접비(연구활용비) 등 목적에 맞는 활용 계획 수립

기타

# Ⅱ. 작성 방법

# ◆ 사업화계획 구상 프로세스



# ◆ 선행 연구

☑ 선행 연구 有: 연구결과의 연결성, 추가적인 고도화 및 제품의 개선성 강조

☑ 선행 연구 無: 선행특허조사 결과로 개발기술과의 차이점 및 개선점, 차별화 강조